skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lei, Weijun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract Intracranial aneurysm rupture causes life-threatening sub-arachnoid hemorrhage. Current endovascular devices like coils, flow diverters, and intravascular implants aim to thrombose the aneurysm but have limitations and varying success rates depending on aneurysm characteristics. We propose a new computational framework integrating CFD and topology optimization to design personalized aneurysm implants. The optimization problem aims to reduce blood flow velocity within the aneurysm while ensuring adequate structural integrity of the implant. The fluid dynamics are governed by the Navier-Stokes equations, while the solid mechanics are described by the linear elasticity equations. A Darcy-Brinkman model is employed to simulate flow through the porous implant in the fluid domain, while the Solid Isotropic Material with Penalization (SIMP) method is used to interpolate between solid and void regions in the structural domain during topology optimization. The objective combines fluid energy dissipation ratio and solid strain energy with spatially varying weights. Global and local volume constraints generate personalized implants with porosity and flow-diverting architectures. The approach is demonstrated on patient-specific aneurysm geometries from rotational angiography. This CFD-driven topology optimization method enables personalized aneurysm implant design to potentially improve occlusion rates and reduce complications compared to current devices. Further studies will validate the optimized designs and investigate their efficacy in vitro and in vivo. 
    more » « less